Galvanostatic Intermittent Titration Technique for Phase-Transformation Electrodes

نویسندگان

  • Yujie Zhu
  • Chunsheng Wang
چکیده

A novel galvanostatic intermittent titration technique (GITT) and a novel potentiostatic intermittent titration technique (PITT) for phase-transformation electrodes were developed by integrating mixed control phasetransformation theory with traditional GITT and PITT methods. The contribution of the strain accommodation energy to the thermodynamic driving force for phase transformation was assessed. These novel GITT and PITT methods can be used to determine the true ion diffusion coefficient and the interface mobility of phasetransformation electrodes in the two-phase region. To demonstrate the utility of this method, the lithium ion diffusion coefficient and the interface mobility of two LiFePO4 samples with different particle sizes were obtained in the two-phase region. The lithium ion diffusion coefficient in the two-phase region as measured using phase-transformation GITT was on the order of 10-13 cm2/s in the phase (Li1-yFePO4) and 10-12 cm2/s in the R phase (LixFeO4), which is similar to the diffusion coefficients in the single and single R phase regions determined using traditional GITT and PITT. This similarity with the diffusion-coefficientvalidated phase-transformation GITT and PITT is expected since traditional GITT/PITT is reliable in the single-phase region. The interface mobility of the LiFePO4 (about 10-15 m mol/J s) increases with decreasing particle size. The interface mobility of the LiFePO4/FePO4 during electrochemical discharge at room temperature is comparable to that of the martensite-austenite transformation in an Fe-C alloy with a semicoherence interface at 350 °C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic characteristics of mixed conductive electrodes for lithium ion batteries

The rate performances of four mixed conductive electrodes (Li4/3Ti5/3O4, LiFePO4, LiCoO2 and LiCo1/3Ni1/3Mn1/3O2) were investigated using alvanostatic charge/discharge, electrochemical impedance Spectroscopy (EIS) and galvanostatic intermittent titration (GITT). These four electrode aterials can be roughly divided into two groups according to the structure change during Li intercalation/extract...

متن کامل

Least Squares Galvanostatic Intermittent Titration Technique (LS-GITT) for Accurate Solid Phase Diffusivity Measurement

Solid phase diffusivity Ds is a key parameter in Lithium-Ion cell models because solid phase diffusion typically dominates the voltage transients. The Galvanostatic Intermittent Titration Technique (GITT) is easy to implement and universally accepted as the standard for diffusivity measurement, but the accuracy of GITT diffusivity measurement is unknown. This paper develops a Least Squares GITT...

متن کامل

An advanced cathode for Na-ion batteries with high rate and excellent structural stability.

Layered P2-Na(x)[Ni(1/3)Mn(2/3)]O(2) (0 < x < 2/3) is investigated as a cathode material for Na-ion batteries. A combination of first principles computation, electrochemical and synchrotron characterizations is conducted to elucidate the working mechanism for the improved electrochemical properties. The reversible phase transformation from P2 to O2 is observed. New configurations of Na-ions and...

متن کامل

Fe-containing CeVO4 films as Li intercalation transparent counter-electrodes

Iron containing CeVO4 films were prepared using the sol–gel method. The crystalline structure of powders and films with Fe/Ce/V ratios of 0.1:1:1, 0.3:1:1 and 0.5:1:1 were investigated by X-ray diffraction (XRD) and infrared (IR) spectroscopy. XRD revealed the predominance of a CeVO4-W (wakefieldite) crystalline phase with a small amount of monoclinic CeVO4, CeO2 and Fe2O3. Ex situ IR absorbanc...

متن کامل

Evolution of Reduced Graphene Oxide–SnS2 Hybrid Nanoparticle Electrodes in Li-Ion Batteries

Hybrid nanomaterials where active battery nanoparticles are synthesized directly onto conductive additives such as graphene hold the promise of improving the cyclability and energy density of conversion and alloying type Li-ion battery electrodes. Here we investigate the evolution of hybrid reduced graphene oxide-tin sulfide (rGO-SnS2) electrodes during battery cycling. These hybrid nanoparticl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010